Measure Theory with Ergodic Horizons Lecture 2

Generation of algebras and J-algebras.

Det. A basis too a metric (topplogical spece) X is a collection C of open sets
such that each open set in X is a anion of some sets from E.
X is called second citel if it admits a cited basis.

Examples, (a) Ju IR^d, cational boxes form a basis, so IR^d is 2rd citel.
(B) For a citel
$$A \neq O$$
, the space $A^{(N)}$ is 2rd cited basis for a cited basis for a metric space X. We are cylinders form a
cited basis for $A^{(N)}$.

Discortion. If C is a cited basis for a metric space X. We are a B(X).

Progr. For writing spaces, 2rd citedity is equivalent to separability.

Lear. HW

Det. A measurable space is a pair (X, 5) where X is a whord G is a
 $T-algebra on X$.

Measures.

Det. For a set X and an algebra to on X, a function $f: A \rightarrow [O, w]$ is
said to be:
• timitely additive if $f(\coprod A_i) = \sum_{i \in N} f(A_i)$ for all disjoint $A_{O, \dots, K m} \in A$.
• citely additive if $f(\amalg A_i) = \sum_{i \in N} f(A_i)$ for all disjoint $A_{O, \dots, K m} \in A$.

Det. For a weak rable space (X, 5), a measure on X is a citely additive
function $\mu: S \rightarrow [O, w]$ such that $\mu(O) = O$. A measured space (X, 5)
quipped with a measure μ is called a measure space and lended (X, S, μ).

Cartion. There is a term finitely additive measure which means a function

$$\mu: A \to 10, 00$$
 on an algebra A that is finitely additive and $f(0)=0$.
But timitely additive resurces one hypically not measures even it b is a graggeb
Not. A measure μ on a measurable space (X, S) is called:
• finite if $\mu(X) < 0$.
• probability if $\mu(X) = 4$.
• probability if $\mu(X) = 4$.
• or finite if X can be partitioned into a tably many use from S
each of which having finite measure.
Observation. (a) A atthe weighted sum of measures is also a measure, i.e. if the μ are
measures on a measure weighted sum of measures is also a measure, i.e. if the μ are
measures on a measure of (X, S) .
(b) A atthe intervent of probability measures is also a probability measure, i.e.
it he μ are probability ensures on a measures is also a probability measure, i.e.
it he μ are probability measures on a measures is also a probability measure, i.e.
it he μ are probability measures on a measures is also a probability measure, i.e.
it he μ are probability measures on a measures is also a probability measure, i.e.
it he μ are probability measures on a measures is also a probability measure, i.e.
it he μ are probability measures on a measures is also a probability measure, i.e.
it he μ are probability measures on a measures is also a probability measure, i.e.
it he μ are probability measures on a measures is also a probability measure, i.e.
it he μ are probability of $\mu = 0$ on any measures is also a probability measure i.e.
it is a measure on (X, S) .
(b) The direct measure of a point $x \in X$ is the measure J_x on $(X, B(k))$
defined by $J_x(A) = \int_1^{1} if xeA .
I o otherwise .
Note that if X is atthe i. He measure μ on $(X, B(X))$ defined by
 $f_x(A) := \int_{1}^{1} A$ is kinke.
Note that if X is atthe, then $f_x = \sum_{x \in X} X$.$

(d) Given a set X, define a measure
$$\mu$$
 on the s-algebra of the 1/co-cfb cets:
 $\mu(A) := \begin{cases} 1 & \text{if } A \text{ is unable This is a measure due to the fact that} \\ 0 & \text{if } A \text{ is a cfb} & - \text{cfl unions of a tbl sets are affol.} \\ & \text{Checking This is left as an exercise.} \end{cases}$